
Introduction to
Model Driven Architecture (MDA)

NCICB Software Development Processes
Facilitating Systems Interoperability

Sashi Thangaraj (SAIC)

2

Agenda

What is the MDA?
– MDA Overview
– MDA Principles

Why Model?

MDA and caBIG

MDA and Software Development

MDA Approach

Case Study – caBIO and MDA

Q&A

3

What is the MDA?

Model Driven Architecture (MDA) is an emerging set of standards and
technologies focused on a particular software development style
The MDA provides a conceptual framework and set of standards
– Express models
– Model relationships,
– Model-to-model transformations
MDA is based on the
– Meta-Object Facility (MOF)
– Unified Modeling Language (UML)
– XML Metadata Interchange (XMI)
– Common Warehouse Meta-Model (CWM) modeling specifications
MDA established by Object Management Group (OMG), a non-profit
consortium of 800+ organizations that produces/maintains computer
industry specifications for interoperable enterprise applications

“MDA works as a reasonable step up from today’s popular development techniques.”
— Grady Booch

4

Principles of MDA

Four principles underlie the OMG’s view of MDA:
o Well-defined notation models are cornerstone to understanding

systems
o Building systems can be organized around a set of models which are

organized into an architectural framework of layers and
transformations

o A formal underpinning for describing models in a set of meta-models
facilitates meaningful integration and transformation among models,
and is the basis for automation through tools

o Acceptance and broad adoption of this model-based approach
requires industry standards to provide openness to consumers, and
foster competition among vendors

5

Why Model?

All forms of engineering rely on models to understand complex,
real-world systems
Models facilitate the communication of key system
characteristics and complexities to various stakeholders
Models provide abstractions of a physical system that allow
engineers to reason about the system by ignoring extraneous
details while focusing on relevant ones
Models are used to reason about specific properties of the
system when aspects of the system change and can assist in
predicting system qualities
Depending on the context, different elements can be modeled
which provide different views which ultimately facilitates:
– analyzing problems
– proposing solutions
Applying different kinds of models provides a well-defined style
of development, providing ability to re-use common approaches

6

MDA and caBIG

The use of MDA will facilitate interoperability between caBIG
systems
– Interoperability is key for data sharing in federated systems

MDA approaches will communicate key system characteristics to
caBIG participants

caBIG silver/gold compatibility guidelines specify the use of
standards based information models for facilitating
interoperability

The caBIG architecture workspace will assist in recommending
standard document templates describing MDA artifacts (e.g. use
cases)

7

MDA and Software Development

Several software development processes leverage MDA to
varying degrees:
– Rational Unified Process (RUP)
– Extreme Programming (XP)
– Agile Programming
– Home Grown Process
– Combinations

• RUP and XP
– Others

In each software development process, there are different ways
of developing software

– Code only
– Model only
– Model is our code -> Code is our model

Software development tools and technologies can assist in
developing software based on MDAs making it practical and
efficient to apply

8

MDA Approach

Analyze the problem space and develop the artifacts for each
scenario
– Use Cases

Design the system by developing artifacts based on the use case
– Class Diagram
– Sequence Diagram

Use meta-model tools to generate the code

9

Case Study – caBIO and MDA

caBIO Overview

caBIO Problem Statement
– Use Cases

caBIO Design Artifacts
– UML Class Diagrams
– Sequence Diagrams
– Architecture

caBIO Software Development
– Code Generation Tools
– APIs

caBIO Testing and Deployment

10

caBIO Overview

The cancer Bioinformatics Infrastructure Objects (caBIO) is a
service-oriented based infrastructure supporting multi-
disciplinary scientific research studies

caBIO provides standard object models and uniform API (Java,
SOAP, HTTP-XML, Perl) access to a variety of intramural and
extramural genomic, biological, and clinical data sources

caBIO objects simulate the behavior of actual biomedical
components such as genes, sequences, chromosomes,
sequences, cellular pathways, ontologies, clinical protocols, etc.

caBIO is “open source” and provides an abstraction layer that
allows developers to access genomic information using a
standardized tool set without concerns for implementation
details and data management

11

caBIO Problem Space – Use Cases

Description

Actors

Basic Course

Alternative Course

12

caBIO Design Artifacts – UML Class Diagrams

13

caBIO Design Artifacts – State Transition Diagrams

Sequence
diagrams
model the flow
of logic within
your system
visually,
enabling
validation and
documentation
of logic

14

caBIO Design Artifacts - Architecture

Java
Applications

Data
Access
Objects
(OJB)

Object
Managers

Web Server

Tomcat
Servlets

(XML
XSL/XSLT)

JSPs

SOAP

HTML/XML
Clients

(Browsers)

SOAP
Clients

DataObjectPresentationClient

Perl
Clients

Biomedical
Objects

[Gene, Disease,
etc.]

RMI

UCSC
DAS

caDSR

EVS

NCI

15

caBIO Software Development – Code Generation Tools

caBIO leverages in house code generation tools for generating
APIs

There are a variety of third-party and open source code
generation tools for generating Java, SOAP, HTTP, and Perl
APIs

Code generation tools rely on templates that generate code
directly from the UML model (XMI file)

Automatic code generation facilitates ease of maintenance

Standards based model driven automated design and
development processes facilitate ease of maintenance!

16

caBIO Software Development – APIs

Java
– Query/retrieve biomedical objects

directly via RMI

HTTP-XML
– Properly formed URLs in any web

browser/client can retrieve XML-
formatted object data directly

SOAP
– SOAP client in any

language/environment can send
request to NCICB server for object
data

– SOAP-XML envelope and payload
returned

caBIOperl
– caBIOperl wraps lower-level

SOAP API
– Shields developers from SOAP

calls and XML parsing

17

caBIO Testing and Deployment

Testing occurs in various stages:
– Development (Unit) Testing
– Integration Testing
– System Testing
– Production Testing

Test cases are created for each use case

Test scripts are created to test all test cases and APIs

Data validation is an important component of testing

caBIO is deployed to each test server and the production server
via standard build processes
– Apache ANT, an open source Java based build tool, is leveraged

All MDA artifacts and artifact versions are maintained under
Configuration Management (CM) control
– Concurrent Versioning System (CVS), an open source CM tool, is

leveraged

Q & A

http://ncicb.nci.nih.gov/core/caBIO

	Introduction to Model Driven Architecture (MDA)
	Agenda
	What is the MDA?
	Principles of MDA
	Why Model?
	MDA and caBIG
	MDA and Software Development
	MDA Approach
	Case Study – caBIO and MDA
	caBIO Overview
	caBIO Problem Space – Use Cases
	caBIO Design Artifacts – UML Class Diagrams
	caBIO Design Artifacts – State Transition Diagrams
	caBIO Design Artifacts - Architecture
	caBIO Software Development – Code Generation Tools
	caBIO Software Development – APIs
	caBIO Testing and Deployment
	Q & A

